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Abstract— This paper is the first analytical work to exhibit
the substantial gains that result from applying site specific
knowledge to transmit power control in wireless networks. The
proposed power control scheme works seamlessly with the best
frequency allocation algorithm today to further improve network
throughput, e.g., we improve the 25, 10, 5, and 3 percentiles of
users’ throughputs by up to 4.2%, 9.9%, 38%, and 110%, and
save power by 20%. Site specific knowledge refers to the use of
knowledge of the propagation environment, building layouts, the
locations and electrical properties of access points (APs), users,
and physical objects. We assume a central network controller
communicates with all APs, and exploits site specific knowledge
to predict the path loss between every AP and client, thereby
optimizing transmit power. Our algorithms consistently yield
high gains irrespective of network topology and the number of
controlled APs, rogue interferers, and available channels.

I. INTRODUCTION

Radio propagation characteristics are highly site specific,
since major propagation mechanisms (e.g. penetration, reflec-
tion, and diffraction) are directly related to locations, sizes,
and electrical properties of physical objects in the surround-
ings. Site-specific channel prediction algorithms have been
developed [1]–[5]. These site specific prediction techniques
use a building layout or a satellite map and compute path
losses between any pair of AP and user, when the user’s
location is obtained via GPS (Global Positioning System) or
other known position location technologies2. The complexity
of these prediction tools have been reduced, and computing
power has increased, so that they can be implemented for real-
time network management applications. In this paper we use
site specific knowledge to improve transmit power control in
wireless networks, particularly in wireless local area networks
(WLANs) formed by APs and their clients. The same problem
exists in cellular networks.

Past work on WLAN frequency allocations (see [8] and
references therein) assume that the transmit power of each
AP is fixed, and simply compare the throughput gains with
different frequency allocations algorithms. The work in [8]
has been shown to outperform all other published work on

1This work is sponsored by NSF Grants ACI-0305644 and CNS-0325788.
2Several indoor position location approaches, based on signal strength

sensing, are widely known today and used in some wireless networks [6],
[7]. Other triangulation methods can also be used to locate a client. Modern
cellular handsets are equipped with GPS chips or other position location
technologies. State-of-the-art GPS can work not only outdoors but also
indoors; various vendors, e.g. Metris and SnapTrack, provide indoor GPS
solutions.
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Fig. 1. An illustration of desired and interfering signals.

frequency allocations in WLAN, because it uses site spe-
cific knowledge at a central network controller to optimize
frequency allocation. The advantage of using site specific
knowledge is to predict a priori path loss between any AP
and user. For example, assume 3 APs a1, a2, and a3 in
Fig. 1 operate on the same channel. Client c1 can measure the
aggregate interference from a2 and a3 during the time when a1

is not transmitting the desired signal to c1. However, c1 does
not know that the sources of the aggregate interference are a2

and a3 respectively, since the two interference waveforms from
a2 and a3 are mixed and cannot be decoded by c1. Moreover,
c1 cannot distinguish the intensity of each interference compo-
nent from a2 and a3. By contrast, the central controller uses
site specific channel prediction to know the source and the
intensity of the interference from each AP, given knowledge
of the location of c1 and the AP infrastructure. Site specific
knowledge has been applied to frequency allocations (as in
[8]), and is applied to transmit power control in this paper.

The main contribution of this work is that our transmit
power control works seamlessly with the best frequency al-
location algorithm to date (i.e., [8]) to further improve users’
throughputs. Section II presents related work, Section III
introduces notation and assumptions, and Section IV describes
the formulation, algorithms, and implementation concerns for
a transmit power control problem. Then, Section V shows
simulation results, followed by the conclusions in Section VI.

II. RELATED WORK

Chiang and Bell [9] present algorithms to solve utility
maximization over powers and rates. The work in [9] assumes
that a central network controller knows which APs and clients
are actively sending data (downlink or uplink, respectively),
and optimizes transmit powers and transmission rates for these
active APs and clients (rates are related to power through



Shannon capacity formula [10]). Whenever the set of active
APs and clients changes, the central network controller has
to know the new set and perform the optimization of power
and rates again. Obviously, the overhead induced by [9] is
considerable. Most traffic in WLANs is downlink [4], [5],
[11]; hence, maximizing signal-to-interference-and-noise ratio
(SINR) and downlink throughput as seen by users are key
to proper network design. In this work, we optimize transmit
power control for the downlink transmission case. Our opti-
mization is justified by the work in [8], [12], which has shown
that the frequency allocations and transmit powers optimized
for the downlink-only case also perform well in networks
with both uplink and downlink traffic, as long as downlink
dominates the network traffic.

Foschini and Miljanic [13] consider that base stations are
always sending downlink traffic, and presents a distributed
power control algorithm to minimize transmit powers so that
each user’s SINR meets the minimum SINR requirement.
Uplink traffic is not considered in [13]. Xiao [14] et al
focus on a case where no feasible transmit power solution
exists to satisfy the SINR constraints for all clients in the
entire wireless network; in such case, [13] does not converge.
The work in [14] considers turning off nodes to reduce
interference levels, in order that a solution that satisfies the
SINR constraints can be found. Hanly [15] and Yates and
Huang [16] extend the work in [13] by considering jointly
optimal base-station selection and power control. Our work
considers more than minimum SINR requirement. We achieve
proportional fairness of SINR distribution for clients, thereby
yielding significant throughput gains, especially for users that
suffer low throughputs.

III. NOTATION AND ASSUMPTIONS

Suppose M APs, indexed by M = {1, 2, . . . ,M}, operate
on K orthogonal frequency channels. We index users (or
clients) by L = {1, 2, . . . , L}. We denote the identity of an AP
and a client by am (m ∈M) and cl (l ∈ L), respectively. We
assume no APs or users are at the same locations. We assume
every user is associated with a single AP; m(l) (depending
on l) denotes the index of the AP with which cl is associated,
i.e. am(l) is associated with cl. Let fm (fm ∈ K) denote the
channel that am operates on, and let ~f = (f1, f2, . . . , fM )
denote the channels of all M APs. Let Pn denote the transmit
power of AP an.

We assume that the central network controller periodically
(say every 5 minutes) requires the APs to stop transmitting for
a short duration of time (say, one second). In this duration,
APs take turns in requiring all users associated with them
to perform measurements of background interference, which
includes noise floor of the RF environment and interference
from rogue RF devices outside the controlled network. Note
that each user needs to measure the background interference
for all available frequency channels. The users then feedback
to APs these measured background interference. Site specific
knowledge along with measurements of background interfer-
ence make the estimations of SINR at users or APs much more

accurate. Let σl denote the background interference measured
at client cl. Ability to deal with rogue interferers is critical
since WLAN is on unlicensed bands; however, [9], [13]–[16]
do not address the negative impact from rogue RF interferers.

The RF channel gain between any AP and client can be
predicted by using site specific knowledge [1]–[5]; let hl,n

denote the RF channel gain (the inverse of path loss) between
the client cl and the AP an, i.e., hl,n is defined as the ratio of
the received power at cl divided by the transmit power of an

if no other RF interference or noise exists in the environment.

IV. A TRANSMIT POWER CONTROL PROBLEM

Recall that the work in [8] assumes the transmit power
of each AP is fixed (denoted P0) and maximizes the sum
of utility of each user’s SINR in a case where all APs are
actively transmitting downlink traffic, since downlink traffic
volume presently dominates WLAN traffic [4], [5], [11]. More
precisely, [8] maximizes the following optimization problem
over all possible frequency allocations ~f ∈ KM .

maximize
∑

l∈L
U(γl) (1)

γl =
hl,m(l)P0

σl +
∑

n:fn=fm(l),n 6=m(l) hl,nP0

The SINR at client cl is denoted γl in (1); the denominator of
γl in (1) consists of background interference (denoted σl) and
co-channel interference from other APs on the same channel∑

n:fn=fm(l),n 6=m(l) hl,nP0. Suppose the optimal frequency

channel vector for (1) is denoted ~f ], which can be found by
using the algorithm in [8].

In this paper, we fix the frequency channel vector as the
optimal one, i.e., ~f ], and control APs’ transmit powers to
further improve clients’ throughputs. Simulation results in
Section V show the throughput gains achieved by employing
transmit power control, as compared with using fixed power.
We intend to solve the following problem.

maximize
∑

l∈L
U(γl) (2)

γl =
hl,m(l)Pm(l)

σl +
∑

n:f]
n=f]

m(l),n 6=m(l) hl,nPn

subject to Pmin ≤ Pn ≤ Pmax, ∀n ∈M.

The variables in (2) are all M APs’ transmit powers {Pn :
n ∈ M}. The transmit power ranges between two constants
Pmin and Pmax, which are specific to hardware of APs, e.g.,
Pmin = 1mW and Pmax = 100mW may be reasonable values
for IEEE 802.11a/b/g APs [17]. The objective in (2) does not
maximize sum SINR, since maximizing sum SINR may favor
users with high RF channel gains from their associated APs
and cause users with low channel gains to suffer very low
SINR. The work in [18] can be applied to show that the SINR
distribution of clients exhibits q-proportional fairness, if the
utility function in (2) has the following form in (2), where q



is a fairness parameter that captures degrees of fairness.

U(γl) =

{
(1− q)−1γ

(1−q)
l , if q 6= 1
log γl, if q = 1

, γl ∈ (0,∞). (3)

Note that q takes positive integer values. Generally, as q gets
larger, the SINR distribution becomes fairer, i.e., the difference
of SINR between clients becomes smaller; especially the
SINRs of the users that have low channel gains from APs
become larger. In the mean time, however, the average SINR
becomes lower as q gets larger. Trade-off between fairness
and average SINR can be adjusted by changing q. The work
in [18] shows that if q →∞, the distribution of clients’ SINR
achieves max-min fairness. Before presenting a key theorem
for characterizing and solving (2), we introduce geometric
programming.

A. Background of Geometric Programming

We first present some definitions; then, the description of
geometric programming follows. This section is based on the
work in [19], [20].

Let x1, . . . , xn denote n real positive variables, and x =
(x1, . . . , xn) a vector with components xi. A real valued
function g of x, with the form

g(x) = cxa1
1 xa2

2 · · ·xan
n , (4)

where c > 0 and ai ∈ R, is called a monomial function, or a
monomial (of the variables x1, . . . , xn).

A sum of one or more monomials, i.e., a function of the
form

g(x) =
J∑

j=1

cjx
a1j

1 x
a2j

2 · · ·xanj
n , (5)

where cj > 0 and aij ∈ R, is called a posynomial function,
or a posynomial (with J terms, in the variables x1, . . . , xn).

According to [19], [20], if an optimization problem has the
following form, it is a geometric program.

minimize e0(x)
subject to ei(x) ≤ 1, i = 1, . . . , n (6)

gi(x) = 1, i = 1, . . . , p

where gi(x) are monomials, ei(x) are posynomials, and xi

are the optimization variables. n and p denote the number of
inequality and equality constraints, respectively. There is an
implicit constraint that the variables are positive, i.e., xj > 0.
The problem in (6) is referred to as a geometric program in
standard form.

B. Algorithms for Transmit Power Control

Theorem 1. If the fairness parameter ‘q’, as introduced in
(3), is an integer and q ≥ 2, the optimization problem in (2)
can be converted to a geometric program in standard form.

Proof. If q = 1, we have U(γl) = −1/γl. Hence maximizing
the objective in (2) is equivalent to minimize the following

expression:

∑

l∈L

1
γl

=
∑

l∈L

{σl +
∑

n:fn=fm(l),n 6=m(l) hl,nPn

hl,m(l)Pm(l)

}
(7)

=
∑

l∈L

{ σl

hl,m(l)
P−1

m(l)

+
1

hl,m(l)

∑

n:fn=fm(l),n 6=m(l)

PnP−1
m(l)

}
, (8)

which is a posynomial in P1, P2, . . . , PM . Similarly, when q =
2, 3, . . . , maximizing the objective in (2) can still be written
as minimizing a posynomial.

The constraints in (2) can be rewritten as

PminP−1
n ≤ 1 (9)

(1/Pmax)Pn ≤ 1, (10)

which complies with the standard form of geometric programs,
as described in Section IV-A.

A geometric program, such as (2), can be transformed into a
convex program. Efficient algorithms exist to solve geometric
and convex programs (see [19], [20]); these algorithms may be
called geometric optimization algorithms. Any such geometric
optimization algorithm can be used to solve our problem
formulation in (2). A central network controller that has site
specific knowledge and communicates with all the controlled
APs can perform the geometric optimization algorithms to
solve the transmit power control problem in (2).

C. Implementation Concerns: Block Processing, Overhead,
and Discrete Power Levels

Note that the problem formulation in (2) needs the knowl-
edge of path gains between APs and clients. Since clients
may be moving, joining, or leaving the network, the path
gains vary over time. We assume that block processing is
used for obtaining path gains, i.e., path gains are sampled
and updated periodically. When the path gains are updated,
optimal transmit powers at APs, i.e., the solution to (2), are
recomputed. The period of sampling path gains and recom-
puting transmit powers is a design choice and could be the
same as the period that frequency allocation algorithms are
performed, as described in [8] (say 1, 2, or 5 minutes).

Simulations show that the computation time needed for
solving (2) is on the order of seconds in the MATLAB pro-
gramming language. Implementation in low-level languages
such as C or Assembly may reduce the computation time to
be tens of milliseconds, which are much less than the period
of sampling path gains and performing transmit power control.
Hence, the overhead is negligible.

Note that the transmit power considered in (2) takes a
continuum of values between Pmin and Pmax. In practice,
however, the transmit power takes discrete values. We may
quantize the optimal transmit power obtained from solving
(2). Quantization clearly loses the optimality. Nevertheless, if
the separation between discrete power levels is small enough,
the quantization loss may be negligible. Therefore, we would
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Fig. 2. Frequency allocation examples for 25 APs on a 5-by-5 nonuniform or
uniform topology. Three kinds of objects (squares, stars, and circles) signify
three orthogonal frequency channels. Filled back objects denote 25 APs;
hollow objects denote 100 users; double-layered objects with inner part filled
with black denote 10 rogues. The units of X and Y axes are meters.

like to find out a practical separation of power levels; results
in Section V-B show that a separation of 2.5dB or 4dB is a
good option.

V. SIMULATION SETUP AND RESULTS

First, Section V-A describes the simulation setup. Then,
Section V-B presents and discusses the simulation results.

A. Simulation Setup

The frequency allocation algorithm in [8] has been shown
to outperform all other published work on WLAN frequency
allocations. However, in [8], all APs use a constant transmit
power. The results in [8] are considered as a baseline case, but
we set the transmit power of every AP to be the maximum
power (100 mW), as opposed to 10 mW, as used in [8]; this
adjustment is based on the data sheet in [17], which states
that he transmit power of APs ranges between 1 and 100 mW.
We compare the baseline case with the optimal transmit power
obtained by solving (2). Users’ throughputs are the metric for
comparison. Note that for both the baseline case and our power
control case, we use the optimal frequency channel vector
obtained by solving (1), i.e., the vector ~f ] mentioned in (2).

We consider 2 network sizes, 3 levels of rogue interference,
and 2 network topologies, and thus have 12 combinations
(2× 3× 2), as shown in the x-axis of Fig. 3. The 2 network
sizes include a 4-by-4 AP layout with 64 users and a 5-by-5
layout with 100 users; the number of users are chosen so that
every AP is associated with 4 users in average. We consider
low, medium, and high interference from rogue interferers,
where the ratio of the number of rogue interferers to the
number of APs is 10%, 40%, and 70%, respectively. We
consider a uniform topology where APs are regularly located
as illustrated in Fig. 2(a), and a nonuniform topology, where
APs are perturbed from the uniform layout with a small
random distance (up to 25% of separation), as shown in
Fig. 2(b). The separation between adjacent APs is 106 meters,
which is the same as the setup in [8], [12]. Noise floor is set
to be 10 dB above the thermal noise to properly represent the
RF environment [21]; the thermal noise is modeled as kT0B,
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Fig. 3. Gains of median, and 25, 10, 5, and 3 percentiles (denoted 25P, 10P,
5P and 3P) of users’ throughputs when transmit power control is employed,
as compared with using constant transmit power of 100 mW at every AP. The
x-axis represents the layout of controlled APs and the percentage of rogue
APs compared to the controlled APs. Nonuniform and uniform AP layouts
are denoted ‘nu’ and ‘u’, respectively.

where k is Boltzmann’s constant (k = 1.3806503 × 10−23

Joules/Kelvin), T0 is ambient room temperature (typically
taken as 300 Kelvin), and B is the equivalent bandwidth of the
measuring device (B = 30 MHz for the bandwidth of IEEE
802.11b/g systems). We consider saturated networks where all
APs are transmitting downlink traffic. For the numerical results
shown in this section, the fairness parameter q is set to 2.
Higher values of q uplift throughputs of the users that suffer
low throughputs, while sacrificing the high-throughput users.
Judicious selection of the fairness parameter q depends on
application requirement and is a topic of ongoing and future
research. We set the number of orthogonal channels (K) to
3 to represent 802.11b/g; other larger values of K produce
very similar trends as to those shown in Fig. 3, making our
approach applicable to cellular networks and 802.11a.

B. Simulation Results and Discussions

Fig. 3 shows the throughput gains of using optimal transmit
power, as compared with using constant power, i.e., the
baseline case. The results of each of the 12 combinations
shown on Fig. 3 are averaged from 10 randomly generated
networks. Although the work in [8] has been shown to be able
to improve the throughputs of users with poor throughputs,
the results in this section shows that transmit power control
can improve even more. Throughputs of the users that suffer
low throughputs are greatly uplifted, i.e., our transmit power
control algorithm improves [8] by up to 4.24%, 9.87%, 37.9%,
and 109% for the 25, 10, 5, and 3 percentiles of clients’
throughputs. The median and 75, 60, 20, and 15 percentiles
of clients’ throughputs are improved by up to 1.69%, 1.46%,
1.97%, 5.74%, and 5.29% (these percentiles are not shown on
Fig. 3 due to lack of space). Our results show that transmit
power control builded upon frequency allocations allows more
users to have satisfactory quality of service.



TABLE I
Power saving FOR DIFFERENT NETWORK SIZES, ROGUE INTERFERENCE,

AND NETWORK TOPOLOGIES.

5x5, nu 5x5, u 4x4, nu 4x4, u

10% Rogue 19.2% 19.3% 17.3% 15.5%
40% Rogue 20.7% 19.0% 19.9% 16.6%
70% Rogue 20.4% 17.5% 18.8% 16.5%

TABLE II
PERCENTILES OF THROUGHPUT GAINS WITH CONTINUOUS POWER

LEVELS, OR 2, 2.5, 4, 5, OR 10 DB OF SEPARATION BETWEEN DISCRETE

POWER LEVELS.

continuum 2dB 2.5dB 4dB 5dB 10dB

25P 3.28% 3.00% 2.92% 3.40% 3.73% 1.45%
20P 5.74% 5.17% 3.78% 5.59% 5.46% 1.43%
10P 9.87% 9.87% 8.91% 9.68% 10.3% 3.86%
5P 33.9% 27.4% 32.7% 31.5% 13.9% 0.985%
3P 109% 103% 109% 65.9% 24.1% 4.52%

In addition to throughput gains, our transmit power control
also saves the transmit power. The intuition is that the inter-
cell interference is reduced by lowering the transmit power of
some APs; thus, some clients’ throughputs are uplifted. Table I
shows that the saving of power expenditure for each of the 12
combinations; the transmit power is reduced about 20%, i.e.,
the average transmit power is about 80mW instead of 100mW.

Quantization: For practical implementation, we have to
quantize the transmit power level. We study several different
values of separation between discrete power levels, namely,
2, 2.5, 4, 5, and 10 dB. For example, if the separation is 4
dB, the actual transmit power levels are 0, 4, 8, 12, 16, and 20
dBm (recall the maximum and minimum transmit power levels
are 1 and 100 mW, which are equivalent to 0 and 20 dBm,
respectively). We consider the case of 4x4 AP layout, 11 rogue
interferers, and nonuniform AP topology, and compute the 25,
20, 10, and 5 percentiles of throughput gains with continuous
or discrete power levels, as shown in Table II. Table II shows
a large drop of 3 and 5 percentiles of throughput gains from
2.5dB to 5dB. Therefore, 2.5dB or 4dB is a practically good
option for separation between discrete power levels. Other
cases of AP layouts, rogue interference, and topology produce
very similar trends as to those shown in Table II, making
our choice of 2.5dB or 4dB applicable for various network
conditions.

VI. CONCLUSIONS

A central network controller with site specific knowledge
can predict the path loss between any AP and client, and
therefore predicts the impact of SINR and throughput on
every AP and user when the transmit power of any AP is
changed. This site specific knowledge leads to vast network
improvements which we have demonstrated by using a trans-
mit power control algorithm, which can work seamlessly with
site-specific based frequency allocation algorithms. Practical
discrete power levels are given, i.e., 2.5dB or 4dB separation.

Our power control scheme is better in uplifting the throughputs
of users that suffer low throughputs when particular utility
functions are chosen. We believe that site specific knowledge
is also useful for other wireless communication problems in
both cellular networks and WLANs, which will be validated
by ongoing and future work.
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